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The stability of unsteady axisymmetric 
incompressible pipe flow close to a piston. 

Part 1. Numerical analysis 

By J. H. GERRARD 
Department of the Mechanics of Fluids, 

Univeraity of Manohester 

(Received 24 May 1971) 

A numerical solution of the Navier-Stokes equations of motion by means of 
finite-difference forms of the vorticity and continuity equations is presented. This 
is applied to the study of the flow of an incompressible fluid produced by the 
motion from rest of a piston in a cylindrical tube of circular cross-section. 

Experiments at  high Reynolds number indicated the presence in the starting 
flow of a ring vortex which was not reproduced by computation. Iteration t o  
determine the stream function was not found to be necessary to achieve 1 yo 
accuracy. Omitting iteration is equivalent to only slightly disturbing the flow. An 
additional random disturbance applied to the flow at each time step was found 
to  result in the production of the ring vortex. 

1. Introduction 
The problem to which the computations described in Part 1 is applied was 

chosen in order to develop the computational and experimental techniques. The 
basis of the choice of problem was that of simplicity. As it has transpired an 
unexpected feature of the flow at high Reynolds number has added interest as 
well as complexity. The physical problem will be described in detail in Part 2, 
which presents the experimental evidence. The investigations centre around the 
basic configuration of a piston advancing unsteadily in a tube of circular cross- 
section and concern the flow in an incompressible viscous fluid in front of the 
piston. Par from the piston solutions can be obtained analytically after the 
manner of Symanski (1930), Sex1 (1930) and, more recently, Womersley (1955) 
and Uchida (1956) who obtained explicit solutions for sinusoidal motion. We 
have been concerned with flow started from rest by both impulsive and gradual 
motion of the piston. 

The computational methods are well established. The Navier-Stokes equations 
are generally solved in one of two ways: either by means of the vorticity equation 
and the continuity equation with vorticity and stream function as the variables 
or more directly in terms of velocity and pressure. The latter method is more 
recent: see, for example, Chorin (1967). The former method, which stems from 
the work of Thom (1928), has been investigated much more extensively. Though 
originating 40 years ago interest has recently considerably increased with the 
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widespread use of digital computers. Different facets of treatments similar to the 
present one are described by Fromm & Harlow (1964), Pearson (1965), Macagno 
& Hung (1967), Strawbridge & Hooper (1968) and Williams (1969). 

The vorticity equation and continuity equation may be solved by explicit or 
implicit methods. Implicit methods have the advantage of being more economical 
in computing time at least in principle. Pearson (1965) advocates the implicit 
method whereas Strawbridge & Hooper (1968) favour the explicit. We have 
followed the explicit method, as also did Macagno & Hung (1967), for the reasons 
given by Strawbridge & Hooper concerning boundary values of the vorticity. 
The explicit method is more straightforward and further reasons for its adoption 
for calculations of unsteady flow are given below in connexion with the deter- 
mination of the time step. The maximum time step is usually determined from 
considerations of computational stability. A slightly more stringent condition 
arises from the requirement of faithful reproduction of the Reynolds number. In  
view of this the more certain approach of the explicit method is favoured. It may 
be that implicit methods are not subject to  computational damping at large time 
steps but it seems that this has yet to be proved. 

A simple test of the correctness of the method by the reproduction of a known 
analytical solution is a necessary but not strictly a sufficient proof that the 
program is acceptable. Peculiarities of boundary condition and stability vary 
from one flow to another. 

The programs have been written in Atlas Autocode and run on the Man- 
Chester University Atlas computer. Run times of several minutes were required. 

2. Basic equations 
In  an axially symmetric flow there are two velocity components, an axial 

velocity w and a radial velocity u. We define axes x and r in the axial and radial 
directions. The Navier-Stokes equations relate w and u to r and z, and include 
the time t ,  pressure p and kinematic viscosity coefficient v. By eliminatingp from 
the equations of motion in the two principal directions one obtains the vorticity 
equation: 

7 is the only non-zero component of the vorticity and is aulaz - awlar. Introducing 
the Stokes stream function @, where 

the continuity equation may be written 
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Equations ( 1 )  and ( 3 )  are non-dimensionalized with some convenient mean 
velocity Wand the tube diameter D, the Reynolds number is defined as WD/v. By 
substituting ( 2 )  into (1) the equation is written in central finite-difference form as 

The continuity equation becomes 

$is* = {h2$i-1,j +h2$i+l, j + g2$i,j+l + g2$i, j-1 

- hg2($i, j + l -  +ii,j-1)/2r-h2g2r7i, jl/{2(h2 + g 2 ) l *  ( 5 )  

Because of axial symmetry the equations have only to be solved in a radial 
plane containing the axis of the tube, The field of flow is bounded by the tube axis 
and wall and by two parallel radial lines, one of which lies in the piston surface. 
This rectangular area is divided by a rectangular mesh. The lengths h and g are 
the mesh lengths in the r and z directions respectively. The subscripts i, j refer to 
mesh points in the z and r directions respectively and the superscript refers to 
the number of the time step. The equation thus gives 7i,j at time ( k  + l ) A t ,  where 
At is the time step, in terms of ri, at time ( k  - 1)At and $ and 7 values at adjacent 
points at time kAt. The superscript k is omitted. A direct finite-difference trans- 
lation of equation ( 1) results in more terms involving ri,j on the right-hand side of 
the equation. These have been transposed by means of the linear relationship 

7:;j = *(?$$1+ 7&1) . 
This substitution increases the stability of the program. Equation (4) is similar 
to, but not identical with, that used by Macagno & Hung (1967) who also investi- 
gated flow in tubes of circular cross-section. 

3. Method of solution 
The problem is set up by assigning values of 7 and $ at all points of the mesh. 

Equation (4) determines the value of 7 at one time step later. The values of 7 on 
the right-hand side of equation (4) are values a t  one time step earlier than the 
7f,J1 on the left-hand side: thus the values to  be inserted in (4) are determined by 
the direction in which the mesh is scanned. Equation ( 5 )  determines the values of 
$ corresponding to the new vorticity field (at time ( k +  1)At).  As it stands ( 5 )  
is only strictly true for vanishingly small time-step values because at the first 
calculation at  the first point in the mesh the right-hand side values of $ are $k: 
the values calculated tend towards $k+l if the mesh is scanned repeatedly. The 
program was designed to iterate the scanning of the mesh to determine + until 
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the largest change in $ at any point was less than some prescribed value. How- 
ever iteration is expensive in computing time and it transpired that iteration 
was not necessary because the time step had to be very small for other reasons 
which will be discussed below. 

After the determination of the 7 and $ fields in the interior of the mesh new 
boundary values are assigned before repeating the process to determine the 
progression in time. 

4. The mesh size and time step 
The finite-difference form of the equations must satisfy certain requirements 

in order to faithfully reproduce a true solution of the continuous equations. 
Obviously each finite-difference statement must approach the continuous 
statement as the mesh size and time step tend to zero. The essential requisite is 
that the truncation errors shall not be large, that is, that the contribution of 
higher order differential coefficients shall be small compared with the one which is 
under consideration, i.e. 

At3 a 3 2  
< l ,  -- 

AZ at3 ‘” h3 a3Z -- 
AZ ax3 

since central differences remove the derivatives of even order. Z is either 7 or 
$ and AZ is the change in Z in the interval of x or t .  These inequalities imply that 
initial disturbances are always likely to have a large effect in flows started from 
rest where 7 = 0 initially and large gradients occur near boundaries. In  the 
problem under consideration there is a region where higher derivatives are always 
large. This is a t  the intersection of the piston and the wall which are in relative 
motion. This singular region must be considered separately. 

There is another relation connecting h and At which results from the condition 
that Reynolds number must be faithfully represented and which also relates to 
the truncation error. Temporal or spatial small-scale variations are smoothed 
out if the mesh is not fine enough. This introduces an artificial viscosity and 
reduces the effective Reynolds number. Any finite mesh size will reduce the 
effective Reynolds number of certain Jlows. This is presumably especially so a t  
high Reynolds number a t  which small-scale disturbances may grow in the real 
flow. Certainty about the absence of this growth would seem to come only by 
successive reductions of the mesh length. 

We turn now to the other relation which the mesh sizes h and At must satisfy in 
order that the correct Reynolds number be simulated. In  an explicit method in 
which the change in vorticity distribution in one time step is determined by a 
single scan of the mesh there may be regions where the maximum rate of diffusion 
is limited to an advance of one mesh length per time step. This distance must be 
greater than the actual rate of diffusion. Thus 

h > C(vt)*, 

where C is approximately constant but exactly constant only for diffusion from a 
flat plate. The magnitude of C is of the order of 5. This results in the non-dimen- 
sionalized expression 

At < &h2Re. ( 7 4  
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The amount by which At needs to be less than this quantity for the Reynolds 
number to be uniformly accurate must be found by trial and depends on the 
particular problem. A similar limit is obtained from program stability con- 
siderations and is usually less stringent, for example, Williams (1969) obtains 
At < +h2Re. Thoman & Szewczyk (1964), on the other hand, obtain a more 
stringent condition from stability considerations. 

There is a restriction on the mesh size independently of At which arises from 
the truncation error and also concerns the faithful representation of the Rey- 
nolds number. In order that the truncation error of the inertia terms shall not 
mask the viscous terms h3Re < 1. 

In  all the computation this condition was satisfied. 
One wonders to what extent implicit methods which increase computational 

stability and allow longer time steps to be used are liable to this scale effect; see, 
for example, Pearson (1965). It would appear, however, that this effect only 
applies to a method which determines the progression in time by one scan of the 
mesh when the scan advances up the vorticity gradient. 

Both implicit and explicit methods require iteration at  each time step. Pearson 
does not quote the number of iterations required. An investigation of accuracy by 
varying the time step, mesh size and number of iterations reveals that in the 
present approach the number of iterations required is not large. The number 
varies during the execution of the program, but for most of the computing 
time one scan of the mesh determines the stream function sufficiently accurately. 
This was found to be the case by Chorin (1967) in direct solution in terms of 
velocity and pressure. This conclusion depends upon the time step and mesh 
length used and the information required: we have not investigated the detail 
of the boundary-layer flow. 

5. Boundary conditions 
In  this section the suffix 0 will be used to denote values on the boundary. 

Suffixes 1 and 2 refer to values a t  1 and 2 mesh lengths, h, from the boundary 
respectively. Equations (4) and (5) are used to determine r] and @ within the flow 
but not on the boundaries. The @ values on the wall are fixed by straightforward 
continuity considerations. Values of r] ,  are required to determine r ]  a t  points 
adjacent to the wall at  a later time. Boundary values of r] are determined by 
extrapolation from the values in the flow. 

By expanding the stream function and the vorticity at the wall in Taylor series 
and applying the conditions of no slip and zero normal velocity at the wall, 
expressions for 7, are found in terms of adjacent values of r] and @. In  a cylindrical 
tube of circular cross-section these expressions are obtained as described by 
Macagno & Hung (1967). This method is basically that employed by Thom (1928). 
On the side walls of the tube the expression for vorticity is 
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This equation is the same as that of Macagno & Hung if we insert q2 = 2y1 - q0 in 
their relation. Equation (8) is used in the form 

neglecting the term of order h4. Macagno & Hung suggest that the next term may 
be included by an iteration process to deal with (i32q/ax2)o but this iteration was 
found here to converge extremely slowly to an incorrect limit. 

On the piston surface the corresponding equations for the boundary value of 
the vorticity, vo, contains the gradient in the direction of the surface. The first 
derivative was fortunately absent from equation (8), relating to the side walls of 
the tube. The corresponding expression on the piston is 

By neglecting the terms of order g4 we obtain 

TO = W1 - 1c.,)/w2 - &rl- (11) 

No attempt has been made to account for the radial derivatives. Equation (1 1)  
was used for those applications in which a solid piston was employed. In  those 
cases where the 'piston' was an air-water interface the boundary condition used 
was that qo = 0 for all time. When employing (1  1 )  a computational instability 
arose on the piston boundary; this was so-called time-splitting and was removed 
in a manner adopted by some previous workers (e.g. Williams 1969). The boun- 
dary value used was the mean of the calculated value and the value obtained by 
extrapolation from previous times. 

6. Program details 
6.1. Field of flow and mesh lengths 

In  the present applications the flow is bounded by the cylinder walls and a piston. 
At the end of the flow remote from the piston gradients in the axial direction 
disappear. The boundary is defined as being where the axial gradient of the 
vorticity at one mesh length from the wall falls below a prescribed limit. The 
vorticity one mesh length further from the piston is equated to the value at the 
penultimate mesh point. In  some calculations a fixed length in the axial direction 
was used. 

Since gradients are expected to be changing most rapidly near the solid 
boundaries a variable mesh length was introduced. Mesh length in some pro- 
grams was made to increase in steps which were smallest at  the piston and the side 
wall and increased towards the axis and away from the piston. This involved 
special treatment of the finite-difference forms of the gradients at the inter- 
sections where mesh length changed but otherwise was straightforward. 
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6.2. Initial conditions 
Except in the preliminary computations which will be dealt with separately, 
only flows starting from rest have been considered. In  all cases the piston moves 
towards the fluid. At the instant of starting a flow, whether impulsively or 
otherwise, the vorticity a t  the wall is very high and a very thin boundary layer 
exists. This cannot be treated accurately by any finite-difference scheme. It has 
been modelled here by assuming a particular boundary-layer thickness and 
velocity distribution initially. The velocity on the side walls was assumed to 
increase linearly with decreasing radius from zero at the wall to that value, wo, at 
one mesh from the wall which made the mean velocity equal to the piston speed. 
The wall vorticity was put equal to wo/h and the value a t  distance h from the wall 
equated to one half the wall value. The vorticity on the piston surface was made 
equal to zero initially. 

In  flow near the non-uniformly moving piston a similar procedure was fol- 
lowed. An additional wall vorticity equal to wo/h was added a t  each time step 
where wo is now the change in velocity in the time interval. The stream function 
was similarly adjusted by an increment at  all points corresponding to a velocity 
change equal to the change in piston speed. An adjustment was made at one 
mesh length from the wall to account for the boundary-layer change during the 
previous time step. 

6.3. Treatment of the corner 
In  the immediate vicinity of the corner the flow is dominated by viscosity. 
Batchelor (1967) considers the creeping flow in a moving corner. In  the present 
problem the region of applicability of such an analysis is extremely small. In  an 
idealizedrepresentation of the motion of a piston in a tube there is a singular point 
at the piston-wall junction where the velocity has the two values of zero and the 
piston speed. In  a real situation there must be a gap between the piston and the 
wall. Relative to the advancing piston there is flow into the gap near to the wall 
and out of the gap near to the piston. In  an attempt to explain peculiarities of the 
flow which were not reproduced in the numerical solution, various models of the 
gap flow were investigated. It was concluded that refinements in modelling 
the flow in the corner did not significantly improve the solution away from 
the immediate vicinity of the corner. 

In the corner the boundary value of the vorticity rapidly changes from being 
large on the side wall to being large and of opposite sign on the piston. Since the 
vorticity must go through zero very close to the corner its value at the corner was 
equated to zero and constrained to remain so. The corner value could not be 
obtained by extrapolation from the flow in the manner of the other boundary 
values. In  any case the extrapolation becomes inaccurate near the corner because 
of large gradients along the wall. 

In  the studies in which a free surface replaced the piston the surface vorticity 
was taken to be zero. In  this case also, equating the corner value to zero is 
reasonable. 
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6.4. Accuracy 

Provided that the finite-difference equations tend t o  the continuous equations as 
the mesh length and time step tend t o  zero, small enough increments will assure 
sufficient accuracy. A balance must obviously be struck between accuracy and 
computing time. Initial investigations were performed on a simplified program 
in which only radial gradients existed. This was applied to  the solution of the 
flow far from the piston for which an analytical result exists for sinusoidal piston 
motion (see, for example, Uchida 1956). This work is reported briefly elsewhere 
(Gerrard 1971). A considerable reduction in computing time is obtained in this 
way, the mesh being replaced by a radial line of points. 

The variable quantities affecting the accuracy and stability are the mesh 
length, the time step and the number of iterations used t o  determine the stream 
function. Calculations were made at two values of the number which replaces the 
Reynolds number in this oscillating flow. The non-dimensional group here is 
D2/vT, where D is the tube diameter, v the kinematic viscosity and T the period 
of oscillation. As long as there is no transition to  turbulence the Reynolds 
number is not significant in this problem. The equation of motion is as equation 
(1)  but with D2/vT replacing the Reynolds number. We put R = D2/vT. 

Computations were commenced with h = 0.02. I n  view of the inequality (7a),  
At has a maximum value determined by the accuracy required. (Stability con- 
siderations are less stringent.) Initially, without any iteration to determine @, 
the error in velocity, for h2R/At = 146, was Q yo of the maximum piston speed 
near the centre of the flow and 2 yo near to  the wall. Increasing h2R/At by a 
factor of 2,  keeping h constant, slightly decreased the error near the centre of the 
flow to Q % and had no effect near to  the wall. This implies that  h2R/At is large 
enough. Decreasing h by a factor of 2 increased the error by about a factor of 2 
because of the fourfold decrease in h2R/At. Repeating the calculation of $ once 
(one iteration) produced about the same improvement as decreasing At, for 
about the same change in computing cost. Variation with each of the three para- 
meters was slow a t  these values; with a much larger mesh or time step, variation 
became more rapid. We conclude that with reasonable lengths of computing run 
the accuracy must be limited t o  a little better than 1 Yo. 

7. Piston started from rest: application of the basic program 
Two series of experiments have been performed: a series in which the flow near a 

free surface was investigated and one concerning flow close to  a solid piston. The 
experiments revealed a ring vortex when the impulsively started flow had a 
Reynolds number above about 450. The measurements with a solid piston were 
performed at a Reynolds number of 525. Numerical work was initially restricted 
to  Reynolds numbers of 525 and 1000. 

Programs were arranged to  print out values of velocity components, of 
stream function and of vorticity, a t  each mesh point when desired. Some pro- 
grams had the added facility of tracing particle paths for direct comparison 
with dye-streak photographs. I n  these calculations the initially chosen particles 
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were moved at the end of each time step with the local flow velocity for a time of 
one time step. 

When particle drift measured at several points along an axial line at  0.8 of the 
radius from the centre was compared with the computed values a discrepancy 
was evident. This was attributed to the inability of the program to produce the 
ring vortex in sufficient strength. A protracted series of numerical investigations 
followed. 

The results obtained at  this stage with what may be called the basic program 
will be presented fist.  The mesh lengths were different in the axial and radial 
directions being equal to 0-02 and 0.0278 diameters respectively. The values of 
h2Re/At of 130 and 270 corresponding to these lengths were expected to be 
adequate and (7b)  was satisfied; the preliminary result for an infinite tube 
suggested that an error of less than 1 % in the velocity may be expected. The 
problem here, however, is somewhat different. We are now dealing with a stability 
problem in which the mesh should be small compared with a much smaller scale 
than the diameter. It is widely recognized that digital computers are strained to 
their limit to accurately reproduce flows at  high Reynolds number. 

The results obtained with the basic program at a Reynolds number of 1000 
are presented as instantaneous streamlines in figures 1 and 2 for the two cases of 
solid piston and free-surface boundaries. With the solid piston a circulating 
region develops near the piston immediately after the impulsive start and drifts 
away axially to die out after half a diameter of piston motion. When the piston is 
a free surface which allows slip this circulating region is absent, but now a circu- 
lating region appears near the side wall. The intersections of the mesh with the 
boundaries are shown on the figures, from which it is seen that the closed stream- 
lines in both figures 1 and 2 are only two mesh lengths in extent in one direction. 
It is worth noting that at the times shown the wall boundary layer has grown to 
about 0.1 diameter. The impression gained by experimental observation is that 
the apparent vortex ring which develops after half a diameter of motion is largely 
independent of the piston boundary condition. For this reason a numerical 
experiment was performed in which marked elements were traced to see if any 
rolling up was evident. Figure 3 shows the first attempts. Marked fluid in a 
rectangle close to the wall and extending 0.4 diameter from the piston was 
followed. Particles close to the wall shot across the face of the piston. Particles 
further into the flow, in the rectangular box shown, performed the motion 
basically characteristic of the flow, namely motion towards the piston followed 
by an inward motion away from the piston. No rolling up ensued. The envelope 
of the particles at  increasing times is indicated on figure 3 and particle paths are 
also shown. Further work showed that certain particle streaks did in fact roll up a 
little indicating that the observed circulating motion is partly a character of the 
basic flow and not entirely due to a concentrated vortex motion. The computed 
effect is not by any means sufficient to account for the rotation observed. A t  this 
stage of the work it appeared that repetition with smaller mesh and larger values 
of h2Re/At might produce greater accuracy and better agreement with experiment. 
It was thought that further improvement might be obtained by iterating to 
obtain the stream function more accurately. This was not found to be the case ! 
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FIGURE l(a) to  (c). For legend see facing page. 
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(d )  s=0.525 

FIUURE 1. Piston started impulsively to Re = 1000, contours of constant stream function 
@ relative to the piston or instantaneous streamlines relative to the piston. Axid mesh 
g = 0.02, radial mesh h = 0.027.8 = diameters of piston travel, At = 0.003, hzRe/At = 270. 

8. Computation with random disturbance included 
Consider again the iteration to obtain the stream function. Iteration is per- 

formed if the maximum change in @ at any mesh point is greater than a pre- 
scribed limit and iteration continues until the maximum change in any one 
iteration is less than this limit. Most work was done with this limit for the change 
in $ equal to 0-0002. The number of iterations n was counted and could be 
displayed. It is found that n decreases with time and is only large for the first few 
time steps and that there usually is no iteration after the order of 10 time steps. 
Making the limit for change in stream function large is equivalent to subjecting 
the flow to initial disturbances. Any finite-difference scheme introduces some, if 
only slight, disturbance. Contrary to expectations it was found that decreasing 
the time step reduced the strength of the ring vortex. Decreasing the number of 
iterations increased the vortex strength very slightly. Since the vortex appears to 
weaken rather than grow stronger as the time step is decreased we conclude that 
it is the result of disturbances which must be written into the program to 
obtain the real flow. It was this discovery which led to the experiments which 
showed that there is a critical Reynolds number for the formation of the ring 
vortex. 
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It was considered that bumps on the wall were a likely source of disturbance. 
Models of bumps in the computations were found to  produce strong ring vortices. 
These mere large disturbances from which it was considered that a ring vortex 
could easily spring. This seemed to  beg the question and this investigation was 
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FIGURE 2. Free surface started impulsively to Re = 1000. Data as figure 1. 
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therefore discontinued. There was no experimental evidence that the position in 
the tube ati which the starting flow was observed had any appreciable effect on the 
appearance of the flow. A random disturbance was, therefore, inserted in the 
computations. At each time step the stream function was randomly altered at 

Solid 0;2 0;3 0;4 0.; 

piston 

Side 
wall 

FIGURE 3. Particle tracing in front of the piston started impulsively to 
Re = 1000. Variable mesh, At = 0.01, g2Re/At > 40. 

each interior point of the mesh. The values of the boundaries and also on the axis 
were not perturbed. The quantity r$-,(random) was added to the existing value of 
the stream function at radius r ,  where (random) was obtained from a repeatable 
random number generator with a rectangular distribution between - 1 and + 1. 
$,, determined the level of the disturbance and was varied to  produce an effect. 
When $-, is too small it has no effect, when it is too large the resulting flow is 
chaotic. The value finally used was 0.02 in most cases, though this could be 
changed by a factor of about 4 without very significant effect. 

The applied disturbance can be thought of as modelling an added turbulent 
fluctuation. It is considered that an unstable flow at high enough Reynolds 
number when perturbed in this random way will display its unstable character- 
istics. It was in fact found that a systematic variation appeared in the velocity 
field computed. The first numerical experiments were made at a Reynolds number 
of 1000 which was considered to be sufficiently above the experimentally deter- 
mined critical Reynolds number for instability effects to become apparent. The 
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FIGURE 4. Contours of constant stream function y% relative to the piston started impulsively 
to Re = 1000 with random disturbances added. Data as figure 1( d )  (s = 0.525). Disturbance 
amplitude $o = 0.01. 
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FIGURE 5. Contours of constant stream function @ relative to the free surface started 
impulsively to Re = 1000 with random disturbances added. Data as figure 2 ( b )  (s  = 0.525). 
Disturbance amplitude $ko = 0.02. 



Incompressible pipe flow close to a piston. Part 1 639 

resulting instantaneous streamlines are shown in figures 4 and 5 which are to be 
compared with figures 1 (d) and 2 (b )  respectively. In  %he free-surface case 
(figures 5 and 2 ( b ) )  the vortex is strengthened. When there is a solid piston a ring 
vortex appeared when the Computation was disturbed. The detailed effect upon 
the velocity field is shown in figures 6 and 7. In  figure 6 the change in axial 

Free surface 
18 

t 
I 
I 
t 

?L& 0.1 
c n 

5 

Y 

x 
Y .- - 8 o ]  

- 
m 
x .* 

-0.1 

Side 
wall 

2 

4 

6 

8 

H 

12 2 

14 ; 
2 

10 ';r 
2 
E 

4 
8 

0 

M 

16 

18 

20 

22 

FIGURE 6. Change in the axial velocity component produced by the random disturbance, 
Axial velocity in figure 5 minus axial velocity in figure 2 (b) .  8 = 0.525, $,, = 0.02. Inter- 
sections ol' the mesh with wall and surface numbered from the corner. 
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velocity (non-dimensionalized with the surface speed) produced by the random 
disturbance is plotted as a function of axial and radial position. In  figure 7 the 
increment in radial velocity is plotted. These graphs are presented in full because 
there seems to be no simple way to describe the level of the random fluctuations. 
These may be though6 of as an equivalent turbulent intensity which from observa- 
tion of these figures appears to be of the order of 1 yo of the piston speed. The 
systematic changes are an order of magnitude larger and vary smoothly with 
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FIGURE 7. Change in radial velocity component produced by the random 
disturbance. As for axial component in figure 6. 
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position. Changing the random number generator to produce a different set of 
random numbers had no effect on the systematic changes observed. 

It therefore appears that the ring vortex results from an instability of the flow. 
In  the computed flow finite disturbances are necessary to trigger the instability. 

r +  Solid piston 

+= -0.005 += -0.01 
FIGURE 8. Contours of constant stream function $ relative to the piston started impulsively 
to Reynolds number 525 with random disturbances added. s = 0.3 diameters, disturbance 
amplitude @,, = 0.02, At = 0.0015, axial mesh g = 0.02, radial mesh h = 0.027. 

The obvious questions arise. Would the real flow show the ring vortex if dis- 
turbances were only very small and where do the disturbances come from in the 
real flow? The first question remains unanswered because of the experimental 
difficulties involved. Disturbances in the real flow can arise in at  least three ways. 
In  experiments with a solid piston its starting motion will not be smooth, some 
judder will be present. There are some residual motions in the fluid before the 
motion proper is started, but these are not expected to reach anything like 1 % of 
the piston speed. The walls of the cylinder will be rough. To investigate this last 
effect the random disturbances were injected only at those mesh points along the 
line one mesh interval from the wall. In  the small number of cases investigated 
the effect was essentially the same as when the whole mesh was randomly per- 
turbed. This is not surprising since the unstable region is close to the wall. The 
apparent need for the disturbances to be finite could well be due to the inability 
to properly model the boundary layer which for the first part of the motion is very 
close to the wall. 

The quantitative results of Part 2 are in the form of time histories of tracer 
particles. Particle tracing facilities were written into the computer programs. 
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The comparison of computed and experimental results is made in Part 2. Some of 
these experiments were made at  a Reynolds number of 525 which is only a little 
above the critical Reynolds number at  which the ring vortex appears. Computa- 
tion at  this Reynolds number did not produce the clear indications of the vortex 
formation which were evident at higher Reynolds number. The turbulence level 
obtained for the same value of $o was considerably greater as can be seen from 
figure 8. Some indication of a vortex is clearly visible as well as a flow inclination 
towards the wall of the tube in the part of the flow remote from the piston. It is to 
be noted that in figure 8 the piston has only moved 0-3 diameters. 

9. Determination of steady flow patterns 
If the program used to determine the starting flow is continued for a very long 

time the steady flow in front of a piston is finally achieved. This requires a vast 
amount of computing time. The slow approach to the steady state is indicated by 
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FIGURE 9. Radial distribution of vorticity as a function of time a t  the end of the mesh 
remote from the piston. Reynolds number = 525, At = 0.01, gaRe/At  > 20.5. 

the curves in figure 9 for the one case where this was undertaken using the basic 
program. The purpose here was to show that the correct steady state was in fact 
approached, It was noticed in this long program that the closed streamlines 
indicated in figure 1 did reappear at later times and die away again several times. 
The process occurs late in the program and so could not be investigated further. 
To this extent a steady state seems not to be reached close to the piston. At the 
other end of the mesh remote from the piston it seems from figure 9 that the 
linear vorticity distribution is approached. 

When only the steady-state value is required, considerably quicker approach 
to the asymptotic value is possible. If At is increased to the verge of computational 
instability the resulting flow undergoes some oscillations which die out because 
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of increasing computational stability with increasing time. I n  this way acceptable 
steady solutions were obtained a t  low Reynolds number. Increased accuracy is 
possible by changing to a small time step after long times when the steady state is 
almost achieved. Alternatively, approximation t o  the steady flow can be used 
as the starting point of the calculations. 

10. Conclusions 
The equations of motion for the axisymmetric flow of an incompressible fluid 

have been solved in finite-difference form in the manner employed previously by 
several other workers. The solution for flow in front of a piston started from rest 
in a tube exhibits the basic characteristic which is the observed flow a t  low 
Reynolds numbers. Relative t o  the advancing piston the flow is towards the 
piston at the walls and away from the piston in the centre of the tube. At higher 
Reynolds numbers the flow was found experimentally to possess an instability 
which resulted in the formation of a ring vortex. 

The factors affecting the accuracy of the solution have been investigated. The 
major factor was found t o  be hzRelAt, where his the mesh length, Re the Reynolds 
number and At the time step. This factor must be high to  achieve an accurate 
solution. It was found that the iteration strictly required to  determine the new 
values of the stream function a t  each time step could be dispensed with without 
affecting the accuracy if h2RelAt was increased keeping h3Re Q 1. This can 
represent asavingin computing time. It was discovered that omitting the iteration 
was equivalent to  a disturbance of the flow. The characteristics of the flow a t  high 
Reynolds numbers, which in practice result from instability, could be produced in 
the computed flow by imposing a random disturbance on the stream function a t  
each time step. Without the random perturbation the computed and observed 
flows differ close to  the piston. The changes affected by the perturbations are an 
order of magnitude larger than the perturbations and therefore real. Since 
artificial viscosity effects due to  truncation errors are apparently absent and the 
Reynolds number is correctly represented one has to  look for a source of these 
perturbations in the real flow. It is suggested that, by analogy with the transition 
t o  turbulence in boundary layers, small axisymmetric perturbations are not 
normally amplified t o  such a degree that a changed flow pattern comes into 
being. Amplification is a three-dimensional effect which is excluded by the 
present computing method and has to be introduced artificially as random 
disturbances. Comparison of the numerical and experimental results is made in 
Part 2. 
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